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Abstract

This week we continue with our exploration of R’s looping and branching capabilities. We will
(re)introduce two fancy new data structures (lists and dataframes) and we will catch a glimpse of
the tapply() and sapply() functions – fiendishly clever functions that often lets you avoid using loops
and branches.

The demonstration.r program, which we will mostly walk through in class, is a sneaky way of
introducing you to Socsim, a microsimulation program (that is full of dissertations) while talking about
data frames and functions.
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1 Introduction

It will come as no surprise that there are many kinds of population simulations. Our Leslie Matrix
simulation would be called a deterministic macro-simulation because there was nothing random about
it and it dealt with counts of organisms rather than individuals. Had we allowed the fertility and/or
mortality rates to change randomly from period to period the simulation would have become a ”stochastic
macro-simulation” because it had randomness (stochasticity) but also dealt with cohorts of organisms
rather than individuals.

But of course population simulation can be even more complicated. Stochastic micro-simulations
track (simulated) individuals with (simulated) life course events governed by stochastic processes. Our
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favorite demographic micro-simulation program is SOCSIM, a program developed in this department
a very long time ago. Since then it has been used by world famous demographers, talented graduate
students, and talented graduate students who have gone on to become world famous demographers.

Using SOCSIM directly would be prohibitively boring right now, so we will “simply”1 spend our
valuable time examining the output from some else’s SOCSIM experiment.

SOCSIM results consist of life histories of huge numbers of fictitious “people” who “lived” generally
over a very long period of fictitious time. SOCSIM experiments generally start with a small initial set
of unrelated people and then as simulated time passes, these people live, marry, give birth, migrate
(sometimes) and die. Over the course of many generations, the result is a large list of “people” with
linkages to all of their ancestors. In other words, SOCSIM produces a complete kinship network for
an entire population – with no reporting errors and no missing data. Clearly, this is fantastic resource
for Demographers – with the one drawback that it is not a population that ever existed. But if such
non-reality ”issues” seem daunting to you now, it is only because you have not yet spent sufficient time
in academia.

The demonstration.r program includes an investigation of the marriage squeeze that might have
happened in a country that might have been Slovakia during late twentieth century. Marriage squeezes
occur when the balance between the sexes is uneven. Wars, sex selective abortion, migration, and heavy
drinking can cause marriage squeezes, but in the case of Slovakia, the cause “was”2 declining fertility
combined with preferences for older husbands and younger wives.

2 Exercise

This week’s exercise consists of the usual demonstration.r program – which we will introduce in class
and several small questions presented below with answers in bacterial sized font. This time it will be
more useful to do the small problems first and then attack the demonstration.r file.

So the drill for this week is:

1. Read/Review Chapters 3-6 in Introduction to R (Pages 19-32) You can skim lightly over
sections 5.7.3 - 5.7.5 which deal with eigen values, Single value decomposition and matrix inversion.
Knowing that these features exist could win you money on a game show someday – but we won’t
be using them in 213.

2. become aware of Socsim Oversimplified

SOCSIM’s homepage is http://lab.demog.berkeley.edu/socsim. You’ll want to explore this site,
in more detail, later in your career as you become desperate for a dissertation topic. For now just
take a look at the chapter on population files in the document called Socsim Oversimplified. You
will be working with files of this kind this week.

1the word “simply” is used here ironically
2many historical facts were ignored in the interest of a better story
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3. Setup your Rstudio project for the current week EVEN though you are going to do the
short problems below first ... it most convenient to copy the demonstration.r file before you launch
Rstudio:

• @:> cp ∼carlm/213/DataStructure/demonstration.r 213/WeekN

• launch Rstudio in the browser of your choice.

• Create a New Project in and Existing Directory...

4. attack the ”small” problems below with the usual thirst for knowledge for which young de-
mographers are well known. In a new cleverly named and .R suffixed file in your current week’s
Rstudio project...try to do the exercises before looking at the solutions (which are of course provided
in unreadable type – if you can’t then at least try to understand why the solutions makes sense – or better
yet – find your instructor’s mistakes and gloat.

5. Apply the skills you have just acquired to the questions in the demonstration.r file that
you previously coppied into your current week’s Rstudio project.

6. email cmason@berkeley.edu with news of your success and excitement over the new skills that
you have acquired.

2.1 ”Small” Problems with even smaller answers

The small problems below use a simple data.frame with data on eruptions and waiting times between
eruptions of a geyser in Yellow Stone National Park. The exercises below should help you get familiar
with slinging around small dataframes before you tackle the larger ones in demonstration.r – which you
will do later.

Solve the problem below in a creatively named file in your weekN project folder.

1. get the “faithful” data set into your workspace by typing data(faithful) then figure out what
“class” of object faithful is.

data(faithful)

attributes(faithful)

## $names

## [1] "eruptions" "waiting"

##

## $row.names

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

## [18] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

## [35] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

## [52] 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

## [69] 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

## [86] 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

## [103] 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

## [120] 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

## [137] 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

## [154] 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

## [171] 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

## [188] 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
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## [205] 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

## [222] 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

## [239] 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

## [256] 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

##

## $class

## [1] "data.frame"

2. Execute and interpret the following R code:

sum(faithful[,"eruptions"] != faithful$eruptions)

## [1] 0

sum(faithful[,1] != faithful$eruptions)

## [1] 0

sum(faithful[["eruptions"]] != faithful$eruptions)

## [1] 0

sum(faithful[[1]]!=faithful$eruptions)

## [1] 0

data.frames (like faithful) are lists and as such you can select from them using the list syntax $ as well as the ”[[ ]]” double bracket syntax.

Data.frames can also be treated as arrays (which as you know are special kind of vector, there are, therefore generally 3 different ways to select a

column from a data.frame).

3. Find the mean waiting time between the first 20 eruptions (rows) in faithful

mean(faithful$waiting[1:20])

## [1] 69.65

## or

mean(faithful[1:20,"waiting"])

## [1] 69.65

## or

mean(faithful[1:20,2])

## [1] 69.65

## or

mean(faithful[["waiting"]][1:20])

## [1] 69.65
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4. Draw a scatter plot of eruption duration vs waiting time.

plot(faithful$eruption ~ faithful$waiting)
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## or

plot(y=faithful$eruptions ,x=faithful$waiting)
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OR...

par(bg='goldenrod')

plot(faithful$eruption ~ faithful$waiting,

cex=rnorm(nrow(faithful)),

col=colorRampPalette(c("cyan","purple","orange"))(11),

pch=1:5,axes=FALSE)
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5. Add a third column to the faithful dataframe. Call it logwait and let it contain the natural logs
of faithful$waiting.

faithful$logwait<-log(faithful$waiting)

## verify that it is what we think it is

sum(log(faithful$waiting) != faithful$logwait)
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## [1] 0

6. Add another column to faithful that holds a logical value which indicates whether or not the
corresponding eruption time is longer or shorter than the median.

faithful$longErups<- faithful$eruptions > median(faithful$eruption)

7. Explain why longErups (or whatever you called the column that you created in the previous question)
looks different in the following two lines of code:

head(faithful)

## eruptions waiting logwait longErups

## 1 3.600 79 4.369448 FALSE

## 2 1.800 54 3.988984 FALSE

## 3 3.333 74 4.304065 FALSE

## 4 2.283 62 4.127134 FALSE

## 5 4.533 85 4.442651 TRUE

## 6 2.883 55 4.007333 FALSE

head(as.matrix(faithful))

## eruptions waiting logwait longErups

## 1 3.600 79 4.369448 0

## 2 1.800 54 3.988984 0

## 3 3.333 74 4.304065 0

## 4 2.283 62 4.127134 0

## 5 4.533 85 4.442651 1

## 6 2.883 55 4.007333 0

8. create a new dataframe, called faithfulS which consists of all of the elements in faithful but
with the rows ordered from longest to shortest waiting time. HINT check out the function order()

faithfulS<- faithful[order(faithful$waiting,decreasing=TRUE),]

head(faithfulS)

## eruptions waiting logwait longErups

## 149 5.100 96 4.564348 TRUE

## 218 4.800 94 4.543295 TRUE

## 158 4.083 93 4.532599 TRUE

## 170 4.617 93 4.532599 TRUE

## 66 4.400 92 4.521789 TRUE

## 203 4.133 91 4.510860 TRUE
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9. Write a loop that will take the average waiting time associated long eruptions and short eruptions
where long and short eruptions are defined as above.

res9<-rep(0,length=2) ## a vector to hold the two results

for(i in 1:nrow(faithful)){
if(faithful$longErups[i] == TRUE){
res9[1]<-res9[1]+ faithful$waiting[i]

}else{
res9[2]<-res9[2]+ faithful$waiting[i]

}
}
res9/c(sum(faithful$longErups),

sum(!faithful$longErups))

## [1] 81.02273 61.35000

10. Find the same two average values as above using an ifelse()

res10<-rep(0,length=2)

res10[1]<-mean(ifelse(faithful$longErups==TRUE,faithful$waiting,NA),na.rm=T)

res10[2]<-mean(ifelse(faithful$longErups==FALSE,faithful$waiting,NA),na.rm=T)

res10

## [1] 81.02273 61.35000

11. Find the same two values as above but using instead the tapply() function.

tapply(faithful$waiting, faithful$longErups,mean)

## FALSE TRUE

## 61.35000 81.02273

12. list objects. Lists in R are called recursive objects because they can contain other objects including
other lists. Big deal huh?. What lists are good for is keeping a bunch of different things together.
For example when you run statistical estimation function such as lm() (regression) the result is
returned as a list. Chiefly this is because the result of lm() consists of objects of different shapes
and sizes:

lm.res<-lm(eruptions~waiting,data=faithful)

names(lm.res)

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"

## one cannot make an array

## out of a vector of coefficient estimates and a vector of fitted

## values, and a list of independent variables and so on. If one were

## to simply drop all these objects independently into the

## workspace... only bad things could happen.
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lists can be references with ”$” notation (dataframes are also lists) or they can be referenced with
.. ”[[ ]]” double square brackets

## reference by name of the list element

lm.res$coefficients

## (Intercept) waiting

## -1.87401599 0.07562795

## reference by index and [[]]

lm.res[[1]]

## (Intercept) waiting

## -1.87401599 0.07562795

## reference by name in [[]]

lm.res[["coefficients"]]

## (Intercept) waiting

## -1.87401599 0.07562795

## an element of a list element:

lm.res$coefficients[2]

## waiting

## 0.07562795

## or

lm.res[[1]]["waiting"]

## waiting

## 0.07562795

## or

lm.res[["coefficients"]][2]

## waiting

## 0.07562795
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How might we separate faithful into a 4 element list where each element holds a subset of rows of
faithful depending on whether waiting or eruptions are greater or less than the their median?

## First the hard way:

faithful$whatsort<-

paste(

ifelse(faithful$eruptions > median(faithful$eruptions),"H","L"),

ifelse(faithful$waiting > median(faithful$waiting),"H","L"),sep='')

faithful.list<-list()

faithful.list$HH<-faithful[faithful$whatsort == "HH",]

faithful.list$HL<-faithful[faithful$whatsort == "HL",]

faithful.list$LH<-faithful[faithful$whatsort == "LH",]

faithful.list$LL<-faithful[faithful$whatsort == "LL",]

table(faithful$whatsort)

##

## HH HL LH LL

## 105 27 24 116

dim(faithful.list$HH)

## [1] 105 5

dim(faithful.list[[1]])

## [1] 105 5

## Now the EASY way:

## same as above -- create an indicator variable

faithful$whatsort<-

paste(

ifelse(faithful$eruptions > median(faithful$eruptions),"H","L"),

ifelse(faithful$waiting > median(faithful$waiting),"H","L"),sep='')

faithful.list2<-split(x=faithful,f=faithful$whatsort)

dim(faithful.list2$HH)

## [1] 105 5

That’s it for Old Faithful, please turn now to the demonstration.r.
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