
Demography 213

Calculating rates using tapply() and IPUMS

Carl Mason
carlm@demog.berkeley.edu

September 26, 2016

Contents

1 Introduction 2

2 Data 2

3 Assumptions and considerations 3

4 Example: calculating ASFR and TFR 4
4.1 Most obvious loopy solution . 8
4.2 Better but less obvious looping strategy 9
4.3 The tapply() function (review) 10

5 Assignment 13
5.1 Getting data from IPUMS to R 14

5.1.1 Download your data directly to /90days/¡your-useridIPUMS¿ 15
5.2 Getting your IPUMS data into R 16

5.2.1 Uncompressing your data file 16
5.2.2 Reading the data into R 17

5.3 Do Science . 18

Abstract

This week we will use the American Community Survey (ACS) to
calculate age specific rates. The example herein is to calculate ASFR and
TFR for US resident women broken out by some interesting characteristic.
Your job will be to find some other sort of rate to calculate – and make a
table and perhaps a simple graph of it.

Monday we will have a show and tell and next week we’ll spend some
time producing clear and beautiful graphs of this week’s results.

While it is perfectly reasonable to solve this week’s problem using
loops–it is modestly advantageous to use tapply().

1

1 Introduction

The Total Fertility Rate is a synthetic measure that sort of more or less estimates
the number of children a woman would have if she lived through her entire
reproductive life and behaved—fertility wise– in the same way as women of
each age at a particular point in time behave. This number is often reported in
the media as the “number of children per woman”. It is a nothing more than
the sum of the Age Specific Fertility Rates (ASFR)s over the reproductive years.
In other words, the work is in is calculating the ASFR.

Equation 1 shows the well known formulae for ASFR and TFR.
This week, we will calculate ASFRs and (trivially) TFRs for US resident,

non-institutionalized women disaggregated by some characteristic or another.
Although fertility is kind of interesting, what this class is really about is calcu-
lating rates – or more generally measures that require numerators and denomi-
nators. Proportions and probabilities are like this too. This comes up a lot in
Demography. Demographers tend to see the world in terms of events (numer-
ator) and risk sets (denominator). As Equation 1 makes “clear” an ASFR is
the number of events (births to women of a certain age) divided by the risk set
(the number of person years experienced by women of that age in that calendar
year).

The tapply() function is particularly well suited to doing these sorts of
calculations – and these sorts of calculations are what you will be doing this
week.

ASFRa =

∑
births to women of age a∑

woman years of exposure at age a
(1)

TFR =

45∑
a=15

ASFRa =

45∑
a=15

E(birthsa|Survival through age a) (2)

a = Single year of age (3)

2 Data

For this project we will use data from the Integrated Public Use Microseries
(IPUMS). IPUMS is a fabulous resource for demographers so if you have not
encountered it before, then you are in for treat.

If you have not already done so, visit www.ipums.org/usa and sign up for
access. Do this by clicking on Login and then taking advantage of the obvious
opportunity that follows (to Request an account).

I have already created an extract of the 2009 American Community Survey
(ACS) which is adequate for doing the example. You may/should want to
create your own extract for the second part of the assignment.

2

www.ipums.org/usa

3 Assumptions and considerations

The ACS provides age and sex as well as a large number of other characteristics
of each person in the sample (which is 1 percent of the US). Crucially, they also
ask whether or not each person has had a child in the last year (actually, the
Census is clever enough to only ask this question of women). It would have been
nicer if they had asked for the date of the last birth but they did not. So it goes.
We can estimate a set of ASFRs with what we have. (If we were ambitious we
might be able to improve our estimate by using the year of birth variable – but
let’s not)

Some details that we shall need to consider are the following:

• The data are not a simple random sample. We must use weights.

• It is feasible and therefore desirable to use single year age cohorts for
women at risk of birth.

• We would like to calculate ASFRs/TFRs for women disaggregated by some
interesting characteristic. There are many to choose from.

• Mortality could have an effect–some women might have died before the
Census Bureau could interview them. Their births and their person-years-
at-risk are lost to us.

• Twin and multiple births pose problems (for parents as well as demog-
raphers). The possibility of multiple single births during the (one year)
period of observation also creates problems for all concerned.

• We are calculating a period TFR rather than a cohort TFR, consequently,
we would like to observe people over a particular calendar year. In a perfect
world, that year of observation would also correspond exactly to the ages
of those under observation. The ACS does not work that way:

– The ACS surveys are collected throughout the year. The ACS sample
is divided into 12 bits and surveys are administered to one bit every
month over the year.

– Relatively few women filled out the ACS survey on their birthday.

We deserve a simpler world than the one we forced to study. Fortunately, as
social scientists, we can fight back against the forces of unreasonable complexity
with our one most powerful weapon: The Assumption.

While we will explicitly deal with sample weights– we can assume our way
out of many difficulties by:

• Defining “birth” as one or more babies.

• Ignoring the possibility of two singleton birth events in a single year.
(known sometimes impolitically as Irish Twins)

3

• Assuming that the probabilities of dying and of giving birth are not cor-
related.

• Assuming that womens’ birthdays are randomly distributed throughout
the year.

• Defining our ASFRs as applying in some way to 2008 and 2009.

Pause briefly to consider the implications. OK that’s long enough.

4 Example: calculating ASFR and TFR

The rest of this document includes a bunch of Rcode intersperced with pithy
remarks. Many serious young scientists have found that running the code in R
as you read is a better way to learn than simply to read and forget. If that’s
you, why not browse to rstudio.demog.berkeley.edu and, as always, create
a NEW project in the already existing 213/WeekN directory. You may also
wish to copy ~carlm/213/TFRI/demonstration.r into your WeekN directory
– although cutting and pasting, or re-typing are also options.

For this example we’ll read in an IPUMS data extract that I already created.
In Section 5.1, it is revealed, how you will create your own IPUMS data extract
and prepare it to be read into R. NOTE that the procedure for reading in
the data in this section is different from the one you will pursue on
your own. Refer to Section 5.1 when you are ready to import your own data
extract.

##

Read the data into R AND

##

CAREFULLY examine each and every variable that we use to make

sure that we understand what each value means

##

the "foreign" library has the code to read and process stata .dta files

NOTE this is not a raw file simply downloaded from the IPUMS I had to

either use stata to create it OR download it AS A STAT .dta file

from IMPUS... just as you will do later...

library(foreign)

acs09.dta is file that I downloaded long ago and saved as a

stata .dta file. The fun of downloading data from IPUMS and

storing it as a stata .dta file is something that you enjoy later

-- in order to get to the point faster we'll just read in the one

that I have stored.

note that the path is /data/carlm NOT ~carlm

4

rstudio.demog.berkeley.edu

acs09<-read.dta(file=paste("/data/carlm/ACS2009/acs09.dta"))

names(acs09)

[1] "year" "datanum" "serial" "hhwt" "region"

[6] "statefip" "gq" "pernum" "perwt" "famsize"

[11] "nchild" "nchlt5" "age" "sex" "marst"

[16] "marrno" "marrinyr" "widinyr" "divinyr" "fertyr"

[21] "race" "raced" "bpl" "bpld" "citizen"

[26] "yrnatur" "yrimmig" "hispan" "hispand" "hcovany"

[31] "hcovpriv" "hinsemp" "hinspur" "occ" "migrate1"

[36] "migrate1d" "diffmob"

Once the data have in read into the object acs09, we can explore it and

clean it up

sum the person weight to see how many people the observations represent

sum(acs09$perwt) ## 75.9 million women between age 15 and 50

[1] 75974672

##

IPUMS GOTCHA # 1 --

It is less than obvious that the acs09£age variable is NOT

numeric.

##

is.numeric(acs09$age)

[1] FALSE

is.factor(acs09$age)

[1] TRUE

levels(acs09£age)

look at all these stupid levels -- many of which in

##this case have no observations.

create a numeric age variable

acs09$ageN<-as.numeric(acs09$age)

make sure it looks right

table(acs09$ageN)

##

16 17 18 19 20 21 22 23 24 25 26 27

20231 20318 20815 20648 19442 17924 17160 16530 17209 17110 17088 17239

28 29 30 31 32 33 34 35 36 37 38 39

5

17532 17824 18005 18402 17777 17792 17265 17429 17828 17983 18853 20534

40 41 42 43 44 45 46 47 48 49 50 51

20579 20932 19360 20286 20679 22050 23425 22969 23360 23886 23918 24931

table(as.character(acs09$age))

##

15 16 17 18 19 20 21 22 23 24 25 26

20231 20318 20815 20648 19442 17924 17160 16530 17209 17110 17088 17239

27 28 29 30 31 32 33 34 35 36 37 38

17532 17824 18005 18402 17777 17792 17265 17429 17828 17983 18853 20534

39 40 41 42 43 44 45 46 47 48 49 50

20579 20932 19360 20286 20679 22050 23425 22969 23360 23886 23918 24931

#########

WTF?##

#########

acs09$ageN<-as.numeric(as.character(acs09$age))

table(acs09$ageN)

##

15 16 17 18 19 20 21 22 23 24 25 26

20231 20318 20815 20648 19442 17924 17160 16530 17209 17110 17088 17239

27 28 29 30 31 32 33 34 35 36 37 38

17532 17824 18005 18402 17777 17792 17265 17429 17828 17983 18853 20534

39 40 41 42 43 44 45 46 47 48 49 50

20579 20932 19360 20286 20679 22050 23425 22969 23360 23886 23918 24931

HEADS UP -- in this case we have no zero age observations because

such folks were not asked about thier fertility. IF YOUR DATA SET

CONTAINS SUCH PEOPLE there is one extra step:

acs09£ageN[acs09£age=="Less than 1 year old"]<-0

##

IPUMS GOTCHA #2 --

fertyr is the answer to the question: did respondent have birth in

the last year? One would think that this was a yes/no question... but

##

is.logical(acs09$fertyr)

[1] FALSE

is.factor(acs09$fertyr)

[1] TRUE

6

table(acs09$fertyr)

##

N/A No Yes

0 665705 39608

The "N/A" here is NOT the same as NA..

create a new "logical" ie TRUE/FALSE variable

acs09$fertyrL<-ifelse(acs09$fertyr=="Yes",TRUE,FALSE)

table(acs09$fertyrL)

##

FALSE TRUE

665705 39608

##

IPUMS GOTCHA # 3

The citizen variable has several irrelevant categories an

one category that is not very well named:

##

table(acs09$citizen)

##

N/A

596433

Born abroad of American parents

7146

Naturalized citizen

41749

Not a citizen

59985

Not a citizen, but has received first papers

0

Foreign born, citizenship status not reported

0

same trick as above to get rid of irrelevant lavels

acs09$citizenF<-factor(as.character(acs09$citizen))

change "N/A" to what it really means

levels(acs09£citizenF) is just a vector of strings

levels(acs09$citizenF)

[1] "Born abroad of American parents" "N/A"

[3] "Naturalized citizen" "Not a citizen"

7

which we can change

levels(acs09$citizenF)[2]<-"US Born"

table(acs09$citizenF)

##

Born abroad of American parents US Born

7146 596433

Naturalized citizen Not a citizen

41749 59985

So now we have the data in usable shape, how shall we calculate the ASFRs?
It is useful to separate this problem into two parts: first that of calculating

the total number of events (births) to each woman of each age and category;
and second that of calculating the “risk set” or total person years at risk (of
child birth) for women of each relevant age and category. These two quantities
(matrices) can be thought of as a numerator and a denominator.

If we are clever enough to generate a numerator and denominator which hap-
pen to have the same structure – matrices or 13 dimensional arrays or whatever,
then one could simply write:

> ASFR <- numerator / denominator

It turns out that tapply() makes this is pretty easy to do – we’ll review
how tapply() works in a minute, but it will be instructive to first do this job
with loops:

4.1 Most obvious loopy solution

The most straight forward way of getting a numerator using loops would be to
create a matrix of zeros to hold the result and then loop through each row of
the acs09 data.frame and increment the appropriate cell of our result matrix.
Here is what that approach might look like:

The numerator should be a matrix of counts of births that occurred to women

by age .. and how about citizenship status

(1) create an empty array to hold the results

note that since acs09 includes only women 15-50, we

only NEED an array with 35 rows -- however it is

convenient if row 43 of our array refers to people who are

43 years old soo consequenlty we're going to create an array

with some extra unusedr rows

range(acs09$ageN)

8

max(acs09$ageN) > length(unique(acs09$ageN)) ## ?

numerL0<-array(0,c(max(acs09$ageN),

length(levels(acs09$citizenF))))

naming the columns is useful when they refer to categorical values

colnames(numerL0)<-levels(acs09$citizenF)

Loop through and visit each row/observation in acs09 (boring)

for(i in 1:nrow(acs09)){
to save on typing grab the current row of acs09

ego<-acs09[i,]

increment the cell of the numerL0 matrix that coresponds to

ego's age and citizenship status

numerL0[ego$ageN,as.character(ego$citizenF)]<-

numerL0[ego$ageN,as.character(ego$citizenF)] + ego$perwt *ego$fertyrL

}

Unfortunately, this loop takes a rather long time to run. R is just not all
that fast with loops.

4.2 Better but less obvious looping strategy

A much better loop-based approach (from a performance in R point of view)
would be to loop through the cells of the result matrix and select and count
relevant people in the corresponding age and citizenship category. Here’s how
that might look:

numerL1<-array(0,c(max(acs09$ageN),

length(levels(acs09$citizenF))))

colnames(numerL1)<-levels(acs09$citizenF)

nested set of loops age visits each row

for(age in unique(acs09$ageN)){
citz visits each citizenship category within each age

for(citz in levels(acs09$citizenF)){

create a vector for selecting those women who are of the

current age and citizenship category

sel<-acs09$ageN == age & acs09$citizenF==citz

count the selected women and store the result

numerL1[age,citz]<-sum(acs09$perwt[sel]*acs09$fertyrL[sel])

}
}

This works a lot faster because in R, its the number of iterations that hurt
performance. R can do square-bracket selections and arithmetic on parts of ar-

9

rays very quickly. But in order to let you cancel a loop after it starts, R is careful
to store all kinds of intermediate results–and that takes a lot of work/time.

4.3 The tapply() function (review)

The tapply() function is very much like the second kind of loop, but tapply()
saves you from the boring task of setting up the results array full of zeros, and
is generally less error prone, and always faster.

The first argument of to tapply() is a vector (column of a data.frame) which
will be broken into subsets each of which to be acted upon separately. In the
example below, this is acs09$perwt* acs09$fertyrL , the each person-weight
multiplied the TRUE/FALSE vector “fertyrL” which is coerced into 1 if the
women had a baby in the last year and zero otherwise.

The second argument determines how the subsets are to be created. In the
example below, each unique combination of acs09$ageN and acs09$citizenF will
form a subset.

The third argument tells tapply() what to do to each of the subsets of the
first argument. In the example below, we just take the sum. To pass arguments
to sum() (or whatever function specified in the third argument to tapply())
just tack them on separated by commas. In the example below, na.rm is an
argument to sum().

tapply() returns a matrix (with row and column names) and one element
for each subset as determined by the second argument.

numer<-tapply(acs09$perwt*acs09$fertyrL,

list(acs09$ageN,acs09$citizenF),

sum,na.rm=TRUE)

dim(numer)

[1] 36 4

head(numer)

Born abroad of American parents US Born Naturalized citizen

15 68 9056 426

16 0 22597 283

17 257 43721 1000

18 889 76056 652

19 1060 112845 621

20 2296 153410 2403

Not a citizen

15 587

16 3552

17 4698

18 7304

10

19 10884

20 16299

A barplot would be nice right now

barplot(t(numer),xlab="Age of woman",ylab="Births in 2009",

col=(numercol<-1:length(levels(acs09$citizenF))))

legend(x="topright",fill=numercol,legend=levels(acs09$citizenF),

cex=.6)

15 18 21 24 27 30 33 36 39 42 45 48

Age of woman

B
ir

th
s

in
 2

00
9

0
50

00
0

10
00

00
15

00
00

20
00

00

Born abroad of American parents
US Born
Naturalized citizen
Not a citizen

#tail(numer)

#tail(numerL1)

It is very convenient to use tapply() for the denominator too. Especially
because the second argument is the same. That ensures that the numerator and
denominator will have the same dimensionality.

11

the denominator is easier -- All we want is a weighted count of the

number of women of each age who were "at risk" of giving

birth. We are neglecting mortality -- because dead women do not

fill out census forms so all we need to do is count

denom<-tapply(acs09$perwt,

list(acs09$ageN,acs09$citizenF),

sum,na.rm=TRUE)

dim(denom)

[1] 36 4

dim(numer)

[1] 36 4

ASFR<-numer/denom

matplot(ASFR,type='l',lty=1,lwd=2,

xlab="Age of woman",ylab="ASFR in 2009",

col=(numercol<-1:length(levels(acs09$citizenF))))

legend(x="topright",fill=numercol,legend=levels(acs09$citizenF),

cex=.6)

12

0 5 10 15 20 25 30 35

0.
00

0.
05

0.
10

0.
15

Age of woman

A
S

F
R

 in
 2

00
9

Born abroad of American parents
US Born
Naturalized citizen
Not a citizen

and apply (NOT t-apply()) takes column sums

TFR<-apply(ASFR,2,sum); TFR

Born abroad of American parents US Born

1.989181 2.004676

Naturalized citizen Not a citizen

2.142767 2.865514

5 Assignment

So now you know how to calculate ASFRs, your job is to find, in IPUMS,
another even more interesting rate (or proportion or probability) to calculate.
And (next week) to plot the result in an informative and attractive manner.
On Monday please be ready to share your excellent work with your

13

excellent colleagues: A five minute story and a table will be quite
sufficient.

The easiest way to go would be to look for variables that ask “did respondent
do X in the last year”. There are several of those. Ambitious students will want
to consider other options as well. Since the IPUMS provides ACS data for each
year between 2001 and 2012, you can – use calendar time in place of age – or
in addition to age. (the rate school attendance by 17 year olds each year for
example). If you choose to pursue something longitudinal, consider ways to keep
your data set reasonably small before downloading it from IPUMS:

• Take only the variables that you need.

• Exclude (during the IPUMS extraction process) observations that you do
not need (men for example if you were looking at fertility)

• Limit your analysis to one state or region – California is interesting enough.

• The IPUMS website allows you to take a random sample of your sample
– look for the Customize Sample Sizes

5.1 Getting data from IPUMS to R

So now you’re ready to do science on your own IPUMS data extract. This
section is about how to get that extract into R – without polluting your home
directory. The gist is that you must make sure that your stata .dta file winds
up in a directory such as /90days/username. It’s good for everyone if you get
used to using the /90days directory for storing things files that are both large
and easily reproduced. IPUMS makes it very easy for you to download another
copy of you dataset–so easy in fact that you will find yourself downloading it
again rather than searching your disorganized directories to find your old copy.
It’s also good for everyone else in the universe, because making backup copies
of stuff takes resources and /90days isn’t backed up. Thanks for being a good
citizen.

The IPUMS website is pretty straightforward – if I wrote instructions on
how to use it, you wouldn’t read them. There are, however, two non-obvious
things about it:

1. Size matters. A single year of ACS data has about 3 million records. This
is manageable, but it is like hiking through mud. If you include a variable
like statefip then you will be able to easily reduce the scope of your
project to a single US state. Consider also removing records by age and
sex if it makes sense for your project. You can “select cases” in IPUMS,
or you can do the data reduction step in R.

2. You have to look for the check box that formats your dataset as a .dta
file. In order to find that check box you first have to find and click
on one of the “change” links on the screen that comes up right after

14

you hit the “create extract button”. A part of that screen is shown be-
low. The link you want is the “change” link on the “Data Format” row.

So skipping detailed instructions on the IPUMS website...I’ll assume that you
have managed on your own to:

• Visit ipums.org/usa (and acquire a userid/password)

• Visit ipums.org/usa again to select variables and samples.

• Receive email from IPUMS telling you that your extract is ready to down-
load.

Once you have done all of this then read on.

5.1.1 Download your data directly to /90days/¡your-useridIPUMS¿

The data file that you are about to download is probably on the order 300MB.
That’s a moderately large file you could get away with putting a few of those
in your home directory, but sooner or later your conscience will catch up with
you and make you feel bad. The smarter, more virtuous place to put it is in
/90days/<useridIPUMS> where <userid> is your userid – or really any word
that no one else is likely to choose. If you are up on your ”12 most important
Unix commands” you’ll remember that you can use ln -s to create a symbolic
link so that your /90days/¡useridIPUMS¿ directory acts like a subdirectory of
you WeekN project directory. What I’d do (in a shell terminal window) is:

@:> mkdir /90days/carlmIPUMS

@:> cd ∼/213/WeekN

@:> ln -s /90days/carlm IPUMS

THEN browse to where the email from IPUMS tells you to go by opening
the link that you were sent by IPUMS with the announcement that your data
are ready and download the STATA formatted data file. This will be the left
most link marked “STATA” under the “Formatted Data” column. Do not

15

bother to download the fixed width text data file. Use the “save link as”
feature of your modern browser to make sure that the compressed stata .dta.gz
file winds up in your /90days/¡useridIPUMS¿ folder.

Its not a bad idea to keep your browser open to that download page as the
code book file – and the rest of the IPUMS site will be quite handy in figuring
out what you have.

5.2 Getting your IPUMS data into R

Once your dataset is downloaded and resting comfortably in your /90days/useridIPUMS
folder you may turn your attention to loading the data into R. This will involve
a couple of UNIX commands, but it’s easiest for both you and your biographer,
if you do those from within R(studio) using the system() function.

Presumeablye, you have already browsed to Rstudio and created a new
project in your pe-existing WeekN direcotry but if no, now would be an ex-
cellent time to do so.

5.2.1 Uncompressing your data file

The STATA formatted data file that you just downloaded is zipped (or com-
pressed). The foreign library in R does not read compressed files so how about
if we uncompress it.

In the following two commands, I create a new and uniquely named di-
rectory in /90days and then I unzip a compressed IPUMS dta file from my
/data/commons folder into the new directory in /90days that I just created
and I give the resultant uncompressed (ready to read) stata .dta file a new and
exciting name.

You will want to copy these commands into your R source file and then
change them to suit your circumstances.

By now you should have created a directory in /90days to hold your data

AND you should have downloaded into it a compressed .dta.gz file if you

haven't done that already, go back a few pages and make that happen.

I also assume here that you have created a symbolic link as suggested

if not, this will not work

uncompress your data into a file in the new directory

system("gunzip ./IPUMS/usa_00086.dta.gz")

Note your file will not be called usa_00086.dta.gz, but something similar.

system("ls ./IPUMS")

should show that you now have

It will take a few moments for this command to execute because uncompress-
ing is just slow. While it is spinning, consider the coolness of this procedure:

• It is not unlikely that, for reasons that you could not possibly have fore-
seen, you will need revise and re-download your IPUMS data set. When

16

you do that it will have a slightly different name. All you will need to do
in R(studio) to get at that yummy new data will be to change probably
one character in the above (gunzip) command, and then run it.

• Although the file that you are working with in this exercise may not be
huge, someday you will find yourself downloading entire full enumeration
censues of very large countries for multiple years. Those will be huge and
you will surely want to feel the inner glow of virtue that derives from not
cluttering your home directory with huge but easily reproduced files.

• Note that the system() command, which you have seen before, is very
useful for running UNIX commands from within R.

5.2.2 Reading the data into R

At this point you should be able to read the data into R as I do in the commands
bellow.

add the library that knows how to read .dta files

library(foreign)

without any arguments other than the file this can work. You might

wish to consult the help screen to see what options exist.

change carlmWeek6/happyScience.dta to something smarter

if you want this to work:

acs<- read.dta(file="./IPUMS/happyScience.dta")

names(acs) ## do the column names look familiar ?

[1] "year" "datanum" "serial" "hhwt" "region"

[6] "statefip" "gq" "pernum" "perwt" "famsize"

[11] "nchild" "nchlt5" "age" "sex" "marst"

[16] "marrno" "marrinyr" "widinyr" "divinyr" "fertyr"

[21] "race" "raced" "bpl" "bpld" "citizen"

[26] "yrnatur" "yrimmig" "hispan" "hispand" "hcovany"

[31] "hcovpriv" "hinsemp" "hinspur" "occ" "migrate1"

[36] "migrate1d" "diffmob"

sum(acs$perwt) ##how many people do the observations represent? sum

[1] 75974672

##the person weight to find out

If you are worried about your data disappearing from /90days before you are
able to complete this exercise, don’t be. First “90days” really means “180 days”
around here. And further, that means 180 days without being touched. You

17

can extend the time that files stay in “/90days” by simply “touching” them.
touch is the UNIX command that does that.

Second, and even more to the point, who cares if your file disappears from
/90days? Your R code is save in your home directory and IPUMS, as far as I can
tell, never deletes your data request. To be fair, once you have some publishable
results, you will want to keep your data and your code all together somewhere
so you can easily (read:possibly) reproduce your work – but that is later. With
IPUMS and data sources like it, you will inevitably download several versions
of your data before you get the one you want to keep.

The above should also serve as a suggestion that when you return to this
project after a brief hiatus, you do not need to run the gunzip command
again. Your .dta file should still be waiting in /90days¡useridIPUMS¿ aka
213/WeekN/IPUMS.

5.3 Do Science

So now you have created an IPUMS extract; downloaded it; and read it into R.
All that’s left is to calculate an interesting measure using the tapply() based
procedure that you just learned.

For Monday please have a table of results and a short story about what you
have found. A graph would be fine – but we’ll spend time graphing next week.

18

	Introduction
	Data
	Assumptions and considerations
	Example: calculating ASFR and TFR
	Most obvious loopy solution
	Better but less obvious looping strategy
	The tapply() function (review)

	Assignment
	Getting data from IPUMS to R
	Download your data directly to /90days/<your-useridIPUMS>

	Getting your IPUMS data into R
	Uncompressing your data file
	Reading the data into R

	Do Science

