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Overview
● Aggregation and the harmonic mean
● Three applied examples
● Next steps
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Different types of aggregation: life table quantities
● Conditional probabilities 

=> aggregate like the normal (arithmetic) mean, weighted by the number of 
survivors at the start of the age interval

● Occurrence/exposure rates in a cohort 

=> aggregate in two ways: 
(1) arithmetic mean of rates, weighted by exposure
(2) harmonic mean of rates, weighted by events



Harmonic mean decomposition

Aggregate death rate

Harmonic mean of the subgroup 
death rates
(weighted by number of deaths in 
each subgroup)



Background: generalized means

For a continuous, monotone function g, the generalized mean of x1, x2, ... , xK can be written

[See, e.g., Carvalho (2016) for a review]
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Background: the harmonic mean

The harmonic mean arises when g(x)=1/x; the harmonic mean of x1, x2, ... , xK is

(for all xi > 0)



The harmonic mean of rates: a physical example
Imagine two cars traveling from city A to city B, a distance of d miles.

The first car travels at 20 miles per hour
The second car travels at 40 miles per hour

What is the average speed at which the two cars travel?
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The harmonic mean of rates: a physical example
Imagine two cars traveling from city A to city B, a distance of d miles.

The first car travels at 20 miles per hour
The second car travels at 40 miles per hour

What is the average speed at which the two cars travel?

distance / rate gives us 
the time it took at each 
rate



The harmonic mean of rates: a physical example
Imagine two cars traveling from city A to city B, a distance of d miles.

The first car travels at 20 miles per hour
The second car travels at 40 miles per hour

What is the average speed at which the two cars travel?

The harmonic mean of 
20mph and 40mph

(which equals 26.66mph)



The harmonic mean of rates: a physical example
Now imagine three cars traveling from city A to city B, a distance of d miles.

The first car travels at 20 miles per hour
The second and third cars travels at 40 miles per hour

What is the average speed at which the three cars travel?



The harmonic mean of rates: a physical example
Now imagine three cars traveling from city A to city B, a distance of d miles.

The first car travels at 20 miles per hour
The second and third cars travels at 40 miles per hour

What is the average speed at which the three cars travel?
We can think of this as a weighted 
harmonic mean of the two speeds, 
weighted by the number of cars traveling 
at each speed



The weighted harmonic mean of x1, x2, ... , xK with weights given 
by w1, w2, …, wK can be written



The weighted harmonic mean of x1, x2, ... , xK with weights given 
by w1, w2, …, wK can be written

… continuous version:



Back to deaths
Suppose we have two subpopulations with death rates m1=d1/L1 and m2=d2/L2

Say m1 < m2

And suppose we know that an equal number of deaths d0 took place in each subgroup

Then our relationship says that the aggregate death rate is given by

What is going on here?

In order to see the same number of deaths from groups that have different death 
rates, we must have had different amounts of exposure; 
since m1 < m2, and d1=d2=d0, it must be the case that L2 < L1.

In other words, the terms in the denominator are estimating the different exposures



Connection to length-biased sampling

Harmonic means often arise in situations where something is being sampled with probability 
proportional to its value -- length-biased sampling

Prob density fn for x under 
length-biased sampling

Prob density fn for x in the 
population

for x > 0



Aggregating rates using the harmonic mean

Harmonic means often arise in situations where something is being sampled with probability 
proportional to its value -- length-biased sampling

Prob density fn for x under 
length-biased sampling

Prob density fn for x in the 
population

for x > 0



So, under a length-biased sample

[See, e.g., Carvalho (2016)]

The expected value of the reciprocal of a draw from a length-biased 
sample is equal to the reciprocal of the population mean 
(i.e., the mean of a sample that is not length-biased)
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It turns out that, under length-biased sampling

So, if we want to estimate the 
population mean from a LB sample, 
we take one over the mean of the 
reciprocals - i.e., the harmonic mean

So in our decomposition of aggregate death rates, we can interpret the 
harmonic mean as telling us that the death rates aggregate like a 
size-biased sample: 
we see more deaths from higher-mortality subpopulations
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Arithmetic mean of length-biased sample

This quantity is the expected value of x 
squared,

What do we get if we calculate the arithmetic mean 
of length-biased samples?
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What do we get if we calculate the arithmetic mean 
of length-biased samples?



So it turns out that, under length-biased sampling, it’s also the case that

The arithmetic mean of 
length-biased samples Population mean

Squared coefficient of 
variation (mean over sd)



Does it make a difference?

● Data: life tables for males and females in US states in 2010 from the US 
Mortality database

● Based on these life tables, simulate an aggregate population with 51 
subnational units of equal size

● Then compare three aggregation strategies:
○ The correct one (equivalent to harmonic mean of deaths, or arithmetic mean of exposure)
○ The arithmetic mean of the rates, weighted by number of deaths
○ The arithmetic mean of the rates, unweighted

● Results suggest that, yes, this can make an appreciable difference - up to 5 or 
10% relative error, in some cases

https://usa.mortality.org/
https://usa.mortality.org/
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● Many demographic methods have been developed to help solve challenging 
estimation problems

● These approaches often require assumptions to be made about one group 
being the same as another group

● Formally understanding aggregation can be helpful for understanding how 
sensitive these methods are to the assumptions they rely upon

● Example: sibling survival 
(this example comes from work in progress with Gabriel Borges at IBGE)



Example: developing sensitivity frameworks

● Example: sibling survival
○ Goal: estimate death rates in settings without gold-standard death certificate data
○ Approach: conduct a sample survey and ask respondents to report about deaths and 

exposure among their siblings
○ Problem: some people have no siblings who are eligible to respond to the survey - they are 

invisible. We can only estimate death rates for the group that is visible to the sibling histories

● So, it would be useful to understand how important this assumption is -- i.e., 
we care about the aggregate death rate across visible and invisible people.

● How misleading is it to use the visible death rate to estimate this aggregate?
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Example: developing sensitivity frameworks

How misleading is it to use the visible death rate to estimate this aggregate?

Death rate among people invisible to sibling histories

Death rate among people visible to sibling histories

Aggregate death rate (which we interested in)

Multiplicative factor by which invisible and visible 
death rate differ

Fraction of deaths that is invisible



Example: developing sensitivity frameworks
Decompose the aggregate death rate using the 
harmonic mean relationship
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An expression that relates the aggregate death 
rate to the visible death rate (which can be 
estimated), in terms of
K - difference between MI and MV

p - proportion of deaths that is invisible





Example: developing sensitivity frameworks

● So understanding aggregation can be helpful for assessing how sensitive 
some demographic estimation procedures are to important assumptions

● Note that the arithmetic mean can be used here, too

● And that there are other techniques apart from the sibling method for which 
this could potentially be useful (eg: Gabriel Borges has applied this to some 
fertility estimation techniques in his work in Brazil)
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In a stationary population, the average lifespan of a cohort is e(0), life expectancy 
at birth.

Suppose we take a snapshot of (living) members of a stationary population at a 
point in time, then follow those people until they die. Call the total lifespan

Total lifespan of people 
observed alive at age x
in our snapshot Life lived so far at age x

Average years of life 
remaining at age x



Example: expected lifespan of the living in a 
stationary population

In a stationary population, the average lifespan of a cohort is e(0), life expectancy 
at birth.

Suppose we take a snapshot of (living) members of a stationary population at a 
point in time, then follow those people until they die. Call the total lifespan

What is the relationship between the average total lifespan of this snapshot and 
life expectancy at birth?



Example: expected lifespan of the living in a 
stationary population

Average total lifespan will be
A weighted (arithmetic) average, 
with weights given by l(x).
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Average total lifespan will be
(Assuming throughout that 
radix l(0) = 1)
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stationary population

Average total lifespan will be Goldstein (2009) showed that these are equal, and 
are equal to the average age in the stationary
population
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Example: expected lifespan of the living in a 
stationary population

So we have that the average total lifespan of the living is twice the average age:

Seems reasonable: on average, people sampled are halfway through their lives.
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stationary population

So we have that the average total lifespan of the living is twice the average age:

Seems reasonable: on average, people sampled are halfway through their lives.

But! We know that, in general, 

So, how should we think about the relationship between these two quantities?
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d(x) is the density of deaths (since we’ve 
taken l(0) = 1), and so we saw earlier 
that this is

We also have
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Example: expected lifespan of the living in a 
stationary population

So we have:

Average years
of life lived in a
cohort

Average years
of life lived among 
people in our 
cross-sectional 
snapshot

Idea: the people we see in a cross-section are a 
biased sample of members of the cohorts in the 
stationary population

The bias comes from the fact that, in the cross 
section, we see people from each cohort in 
proportion to their lifespans
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Example: models of heterogeneity in mortality

● Understanding aggregation can potentially help provide an alternate way of 
thinking about theoretical issues

● Example: what Vaupel and Missov (2014) call the ‘relative risks and fixed 
frailty’ model

○ Every individual i in a cohort has a fixed frailty parameter zi > 0
○ The hazard individual i faces at age x is given by

where            is a baseline hazard for frailty at z=1



Example: models of heterogeneity in mortality

Under this model, we can think of these deaths as being a size-biased sample of 
survival cohort members, where the ‘size’ is the frailty parameter z.
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survival cohort members, where the ‘size’ is the frailty parameter z.

For example, Vaupel, Manton and Stallard (1979) showed that the population, or 
aggregate, frailty at age x under this model is

Avg. frailty of the dead at x
Avg. population frailty at x

[Equation from Vaupel and Missov (2014)]

Squared coef. variation in frailty
among those alive at x



Example: models of heterogeneity in mortality

Under this model, we can think of these deaths as being a size-biased sample of 
survival cohort members, where the ‘size’ is the frailty parameter z.

For example, Vaupel, Manton and Stallard (1979) showed that the population, or 
aggregate, frailty at age x under this model is

Avg. frailty of the dead at x
Avg. population frailty at x

[Equation from Vaupel and Missov (2014)]

Squared coef. variation in frailty
among those alive at x

This is formula is what we 
saw earlier - the arithmetic 
mean from a size-biased 
sample



Conclusion
● Formally understanding aggregation can matter in practical applications
● It can help better understand existing methods
● And it can potentially help conceptualize existing models in a different way



Thanks!
● Feedback welcome, this idea is still being developed
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