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Abstract
The Lee-Carter model is actually a collection of several techniques

and ideas which combine to produce a suite of powerful methods
allowing data summarization and population forecasting. A simple
model converts an array of centered age-specific rates into a rela-
tional model involving an age profile b(x) scaled by a simple time
index k(t). The historical variation in the time index may be used as
a template variance structure for future times and a time series fore-
cast (with suitable confidence bands) of the time index may then be
used to generate a stochastic distribution of future rates, from which
various statistics of interest may be calculated. The technique is very
successful when dealing with mortality rates, in part because the 1-
dimensional fit of the relational model explains almost all the varia-
tion in the process.

1 Lee-Carter: the main ideas

In my view the LC modeling enterprise involves the following steps. There
are lots of variations on the details in how to implement each step, but the
theme is unchanged across all LC-type models:

1.1 Data modelling and dimensionality reduction

In this step the goal is to find a “good” representation of the underlying
historical series of central death rates m(x, t) in terms of a simple model
where age and time effects are separable.

f(m(x, t)) = ax + ktbx (1)

for some monotonic tranformation f(). With luck, this model captures most
of the variation in the historical data and the age profiles ax and bx are
smooth curves with a demographic meaning.
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1.2 Modelling the time parameter kt as a time series

The second step is to fix the age profiles, and look at kt, the mortality index
parameter. The simpler kt turns out to be, the easier it will be to forecast
or extrapolate to future values. In the case of developed countries, kt turns
out to be nearly linear. This is a remarkable feature: not only is the mortality
dynamic nearly unidimensional with respect to age (the bx “shape” of mor-
tality change) but the “pace” of mortality change has been nearly constant
over the historical period.

Although kt is nearly linear, it does bounce around its trend line. Thus,
the standard LC model for kt is the random walk with drift

kt = kt−1 + d+ δt (2)

where d is the drift term or slope of the line and δt is a deviation or error
term. The historical volatility of δ is seen in the LC model to be a best guide
for its volatility in the future. This allows for a quantitative measurement
of uncertainty in forecasts of k. In particular, k for s years into the future
may be seen as

kT+s = kT + sd+
√
sδ (3)

where δ is a random variable with mean 0 and variance equal to the sample
variance of the δt, and T is the final or launch year.

1.3 Forecasting mortality with confidence bounds

Using the stochastic forecast of k, the age profiles from (??) may be brought
back into the picture and a set of stochasticmxt generated. In turn, stochas-
tic values of any life table function at a future time t may be derived.

2 OLS estimation of the Lee-Carter Model

This material is from Wilmoth(1993) “Compuation Methods for Fitting and
Extrapolation the Lee-Carter Model of Mortality Change.”

The LC model

The functional form of the Lee-Carter model may be expressed as:

fxt = ln(mxt) = ax + bxkt + εxt (4)

where
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• mxt is the observed age-specific death rate at age a and time t

• ax, bx, and kt are model parameters and εxt is an error term

OLS fitting

• ax is the average of ln(mxt) over time

• the scale on bx and kt is arbitrary, so constrain
∑

x b
2
x = 1

• With the assumption that Eεxt = 0, the above two features mean that∑
t kt = 0

• fit by minimizing the sum of squared errors:∑
xt

wxt(fxt − ax − bxkt)2 (5)

where wxt is an observation weight.

• Normal Equations: the following normal equations may be derived
from the first order condition, setting the derivatives of (??) to zero,
and honoring the constraints

∑
x b

2
x = 1 and

∑
t kt = 0 . They may

be solved by solving the equations iteratively, repeating until conver-
gence.

âx =
∑

t

wxt(fxt − b̂xk̂t)/
∑

t

wxt (6)

b̂x =
∑

t

wxtk̂t(fxt − âx)/
∑

t

wxt k̂
2
t (7)

k̂t =
∑

x

wxtb̂x(fxt − âx)/
∑

x

wxt b̂
2
x (8)

Alternatively, this may be solved using the Singular Value Decomposi-
tion of {fxt} or decomposing the variance-covariance matrix using princi-
pal components analysis (PCA). Other function minimization methods (e.g.
Newton-Raphson) provide alternative ways to solve the set of equations.
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